Effects of digital elevation model spatial resolution on distributed calculations of solar radiation loading on a High Arctic glacier

Author:

Arnold Neil,Rees Gareth

Abstract

AbstractHigh-resolution airborne lidar data are used to produce digital elevation models (DEMs) of an arctic valley glacier (midre Lovénbreen, Svalbard) at resolutions of 2.5–2000 m, using three different interpolation schemes. These data are used in a distributed model of solar radiation loading for glaciers. When the mean of all lidar measurements within a DEM cell is used to calculate cell height, the differences between the finest- (2.5 m) and coarsest-resolution (2000 m) DEMs for the calculated annual whole-glacier spatial means of total potential direct-beam solar radiation, potential duration of direct-beam solar radiation, and intensity of potential direct-beam solar radiation are 20%, 56% and −23% of the 2.5 m DEM values respectively. A resolution change from 2.5 m to 200 m affects the whole-glacier spatial mean summer net solar radiative flux by an average of 5%, and the summer melt production from the glacier by an average of 3% compared with the 2.5 m DEM values, for the years 2001–03. These changes are largely driven by underestimation of shading by surrounding topography at coarser DEM resolutions. This dependency is reduced in the second and third interpolation schemes, especially at resolutions finer than 50 m, which use the maximum lidar height measurement in some or all DEM cells. These results suggest that resolutions of ∼50 m are the coarsest that should be adopted in high-resolution glacier surface energy-balance models for glaciers of similar size and in similar topographic situations to midre Lovénbreen, and that the impact of DEM resolution on calculated solar radiation receipts can be reduced by an appropriate choice of DEM interpolation scheme.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3