Basal icequakes during changing subglacial water pressures beneath Gornergletscher, Switzerland

Author:

Walter Fabian,Deichmann Nicholas,Funk Martin

Abstract

AbstractUsing dense networks of three-component seismometers installed in direct contact with the ice, the seismic activity of Gornergletscher, Switzerland, was investigated during the summers of 2004 and 2006, as subglacial water pressures varied drastically. These pressure variations are due to the diurnal cycle of meltwater input as well as the subglacial drainage of Gornersee, a nearby marginal ice-dammed lake. Up to several thousand seismic signals per day were recorded. Whereas most icequakes are due to surface crevasse openings, about 200 events have been reliably located close to the glacier bed. These basal events tend to occur in clusters and have signals with impulsive first arrivals. At the same time, basal water pressures and ice-surface velocities were measured to capture the impact of the lake drainage on the subglacial hydrological system and the ice-flow dynamics. Contrary to our expectations, we did not observe an increase of basal icequake activity as the lake emptied, thereby raising the subglacial water pressures close to the flotation level for several days. In fact, the basal icequakes were usually recorded during the morning hours, when the basal water pressure was either low or decreasing. During the high-pressure period caused by the drainage of the lake, no basal icequakes were observed. Furthermore, GPS measurements showed that the glacier surface was lowering during the basal seismic activity. These observations lead us to conclude that such icequakes are connected to the diurnal variation in glacier sliding across the glacier bed.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3