An improved machine to produce nature-identical snow in the laboratory

Author:

Schleef Stefan,Jaggi Matthias,Löwe Henning,Schneebeli Martin

Abstract

AbstractWe present an improved machine to produce nature-identical snow in a cold laboratory for reproducible experiments. The machine is based on the common supersaturation principle of blowing cold air over a heated water basin. The moist airstream is directed into a chamber, where it cools and the nucleation of ice crystals is promoted on stretched nylon wires. Snow crystals grow on the wires and are harvested regularly by a new automatic brush rack. Depending on the settings, different snow crystals can be produced, which are shown to be consistent with the Nakaya diagram. The main snow types are dendrites and needles. We prepared specimens from the snow produced by the snowmaker and analyzed them using microcomputer tomography. For dendrites we show that there are natural snow samples that have the same crystal shape and similar microstructural parameters, namely density and specific surface area. The machine can produce suitable amounts of snow for laboratory experiments in an efficient way. As an advantage over previous designs, uniform and reproducible snow samples can be generated under well-defined conditions.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3