The potential effects of percolating snowmelt on palynological records from firn and glacier ice

Author:

Ewing Michael E.,Reese Carl A.,Nolan Matthew A.

Abstract

AbstractThe effects of meltwater percolation on pollen in snow, firn and glacial ice are not fully understood and currently hamper the use of pollen in ice-core studies of paleoclimate. Several studies have suggested that, due to grain size, pollen is not mobilized by meltwater transport. However, these findings contradict many ice-core pollen studies that show pollen concentrations in snow and firn are much higher than concentrations found in the ice layers they eventually form. This study addresses one aspect of this question by investigating whether meltwater percolation can effectively transport pollen within a snowpack. We used nine Styrofoam coolers filled by natural snow accumulation. The coolers were tested in three groups of three replicates each to simulate different glacier snowpack conditions, and spiked at the surface with a known amount of Lycopodium marker spores. The snow was melted to two-thirds the original volume, sampled stratigraphically and tested for spore concentrations. Meltwater effluent was also collected and examined. Results show substantial vertical and horizontal spore transport during the experiment. Peak spore concentrations were found in the bottommost snow layer or in the meltwater effluent in eight of nine coolers, indicating that the majority of surface spores were transported through the snowpack via meltwater percolation and/or runoff.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3