Sensitivity of mass balance and equilibrium-line altitude to climate change in the French Alps

Author:

Six Delphine,Vincent Christian

Abstract

AbstractAssessment of the sensitivity of surface mass balance and equilibrium-line altitude (ELA) to climate change is crucial for simulating the future evolution of glaciers. Such an assessment has been carried out using an extensive dataset comprising numerous measurements of snow accumulation and snow and ice ablation made on four French glaciers over the past 16 years. Winter mass balance shows a complicated pattern with respect to altitude, with no clear linear relationship. Although the ratios of winter mass balance to valley precipitation differ considerably from site to site, they are relatively constant over time. Relationships between snow/ice ablation and temperature are stable, with no link with altitude. The mean snow and ice positive degree-day (PDD) factors are 0.003 and 0.0061 m w.e. °C−1 d−1. This analysis shows that, at a given site, ablation depends mainly on the amount of snow precipitation and on cumulative PDDs. The sensitivity of annual ablation to temperature change increases almost linearly from 0.25 m w.e. °C−1 at 3500 m to 1.55 m w.e. °C−1 at 1650 m. ELA sensitivity to temperature change was found to range from 50 to 85 m °C−1.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3