Form drag on pressure ridges and drag coefficient in the northwestern Weddell Sea, Antarctica, in winter

Author:

Bing Tan,Peng Lu,Zhijun Li,Runling Li

Abstract

AbstractSurface elevation data for sea ice in the northwesternty - Weddell Sea, Antarctica, collected by a helicopter-borne laser altimeter during the Winter Weddell Outflow Study 2006, were used to estimate the form drag on pressure ridges and its contribution to the total wind drag, and the air-ice drag coefficient at a reference height of 10 m under neutral stability conditions (Cdn(10)). This was achieved by partitioning the total wind drag into two components: form drag on pressure ridges and skin drag over rough sea-ice surfaces. The results reveal that for the compacted ice field, the contribution of form drag on pressure ridges to the total wind drag increases with increasing ridging intensity Ri (where Ri is the ratio of mean ridge height to spacing), while the contribution decreases with increasing roughness length. There is also an increasing trend in the air-ice drag coefficient Cdn(10) as ridging intensity Ri increases. However, as roughness length increases, Cdn(10) increases at lower ridging intensities (Ri < 0.023) but decreases at lower ridging intensities (0.023 < Ri < 0.05). These opposing trends are mainly caused by the dominance of the form drag on pressure ridges and skin drag over rough ice surfaces. Generally, the form drag becomes dominant only when the ridging intensity is sufficiently large, while the skin drag is the dominant component at relatively larger ridging intensities. These results imply that a large value of Cdn(10) is caused not only by the form drag on pressure ridges, but also by the skin drag over rough ice surfaces. Additionally, the estimated drag coefficients are consistent with reported measurements in the northwestern Weddell Sea, further demonstrating the feasibility of the drag partition model.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3