Response times of ice-sheet surface heights to changes in the rate of Antarctic firn compaction caused by accumulation and temperature variations

Author:

Li Jun,Zwally H. Jay

Abstract

AbstractVariations in accumulation rate As(t) and temperature Ts(t) at the surface of firn cause changes in the rate of firn compaction (FC) and surface height H(t) that do not involve changes in mass, and therefore need to be accounted for in deriving mass changes from measured H(t). As the effects of changes in As(t) and Ts(t) propagate into the firn, the FC rate is affected with a highly variable and complex response time. The H(t) during measurement periods depend on the history of As(t) and Ts(t) prior to the measurements. Consequently, knowledge of firn response times to climate perturbations is important to estimate the required length of the time series of As(t) and Ts(t) used in FC models. We use our numerical FC model, which is time-dependent on both temperature and accumulation rate, to examine the response times of both H(t) and the rates of change dH(t)/dt to variations in As(t) and Ts(t) using sample perturbations and climate data for selected sites in Antarctica. Our results show that the response times for dH(t)/dt, which are of particular interest, are much shorter than the responses of H(t). Typical response times of dH(t)/dt are from several years to <20 years. The response times are faster in warmer and higher-accumulation areas such as Byrd Station, West Antarctica (4 years), and slower in colder and lower-accumulation areas such as Vostok, East Antarctica (18 years). The response times to temperature are much faster (0.9 year at Byrd and 2.2 years at Vostok), but the corresponding height changes persist much longer. The associated variations in firn density are significantly preserved in the density–depth profiles. For typical fluctuations of surface weather, the Ts(t) from satellite observations since 1982 and As(t) from meteorological data since 1979 are essentially of sufficient length to correct for FC height changes for measurements beginning in 1992.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3