Characterizing the internal structure of laboratory ice samples with nuclear magnetic resonance

Author:

Brox Timothy I.,Skidmore Mark L.,Brown Jennifer R.

Abstract

AbstractDue to solute impurities and freezing-point depression in polycrystalline ice, a complicated and dynamic network of liquid water forms within the solid ice matrix at the boundaries between ice crystal grains. Impurity concentrations, temperature and pressure influence this network structure and impact physical, transport and rheological properties of ice. However, the nature of this internal network structure is not fully understood. Here we utilize nuclear magnetic resonance (NMR) measurements of diffusion and magnetic relaxation to study the geometry and interconnectivity of the liquid-filled network in laboratory ice, formed from a 7 g L−1 NaCl solution, and its evolution due to recrystallization processes. Additionally, we apply these NMR measurements to observe the impact on ice microstructure of an ice-binding protein (IBP) excreted by the V3519-10 organism (Flavobacteriaceae family) isolated from the Vostok ice core in Antarctica. Recrystallization inhibition was observed as a function of IBP concentration. This work demonstrates the utility of advanced NMR techniques for applications to ice microstructure and has broader implications for understanding geophysical properties of cryospheric systems.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3