Mass gains of the Antarctic ice sheet exceed losses

Author:

Zwally H. Jay,Li Jun,Robbins John W.,Saba Jack L.,Yi Donghui,Brenner Anita C.

Abstract

AbstractMass changes of the Antarctic ice sheet impact sea-level rise as climate changes, but recent rates have been uncertain. Ice, Cloud and land Elevation Satellite (ICESat) data (2003–08) show mass gains from snow accumulation exceeded discharge losses by 82 ± 25 Gt a−1, reducing global sea-level rise by 0.23 mm a−1. European Remote-sensing Satellite (ERS) data (1992–2001) give a similar gain of 112 61 Gt a−1. Gains of 136 Gt a−1 in East Antarctica (EA) and 72 Gt a−1 in four drainage systems (WA2) in West Antarctic (WA) exceed losses of 97 Gt a−1 from three coastal drainage systems (WA1) and 29 Gt a−1 from the Antarctic Peninsula (AP). EA dynamic thickening of 147 Gt a−1 is a continuing response to increased accumulation (>50%) since the early Holocene. Recent accumulation loss of 11 Gt a−1 in EA indicates thickening is not from contemporaneous snowfall increases. Similarly, the WA2 gain is mainly (60 Gt a−1) dynamic thickening. In WA1 and the AP, increased losses of 66 ± 16 Gt a−1 from increased dynamic thinning from accelerating glaciers are 50% offset by greater WA snowfall. The decadal increase in dynamic thinning in WA1 and the AP is approximately one-third of the long-term dynamic thickening in EA and WA2, which should buffer additional dynamic thinning for decades.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3