Polythermal conditions in arctic glaciers

Author:

Blatter Heinz,Hutter Kolumban

Abstract

AbstractEnglacial temperature measurements in Arctic valley glaciers suggest in the ablation zone the existence of a basal layer of temperate ice lying below the bulk of cold ice. For such a polythermal glacier, a mathematical model is presented that calculates the temperature in the cold part and the position of the cold-temperate transition surface (CTS). The model is based on the continuum hypothesis for ice and the ice-water mixture, and on the conservation laws for moisture and energy. Temperate ice is treated as a binary mixture of ice and water at the melting point of pure ice. Boundary and transition conditions are formulated for the free surface, the base and the intraglacial cold-temperate transition surface. The model is reduced to two dimensions (plane flow) and the shallow-ice approximation is invoked. The limit of very small moisture diffusivity is analysed by using a stationary model with further reduction to one dimension (parallel-sided slab), thus providing the means of a consistent formulation of the transition conditions for moisture and heat flux through the CTS at the limit of negligibly small moisture diffusion.The application of the model to the steady-state Laika Glacier, using present-day conditions, results in a wholly cold glacier with a cold sole, in sharp contrast to observations. The present polythermal state of this glacier is suspected to be a remnant of the varying climatic conditions and glacier geometry during the past few centuries. Steady-state solutions representing a polythermal structure can indeed be found within a range of prescribed conditions which are judged to be realistic for Laika Glacier at the last maximum extent of the glacier.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3