Physical and chemical characterization of a spring flood event, Bench Glacier, Alaska, U.S.A.: evidence for water storage

Author:

Anderson Suzanne Prestrud,Fernald Katherine M.H.,Anderson Robert S.,Humphrey Neil F.

Abstract

AbstractPrevious studies of alpine glaciers have demonstrated that as water discharge increases through the summer, the predominant mode of subglacial drainage shifts from a distributed system to a more efficient conduit drainage system. We observed an early-melt-season speed-up and flood event lasting roughly 2 days in a small, uncomplicated Alaskan glacier that appears to have resulted from a sudden shift of the subglacial system in response to a significant accumulation of meltwater within the glacier. Calculated melt-water inputs exceeded discharge before the event; the implied change in storage over this 10 day period was equivalent to roughly 0.13 m averaged over the entire glacier bed. The pattern of discharge and suspended-sediment variations and the appearance of large ice chunks in the stream suggest that the speed-up occurred during a period of establishment of new subglacial conduits. A culminating flood and associated suspended-sediment pulse appear to have marked the final establishment of the new section of subglacial conduit. The flood ended the episode of high sliding velocity, but released water with high solute concentrations that reflect relatively long contact time with sediments. Discharge of stored water, inferred from high solute concentrations and lack of diurnal variation in discharge, continued for at least 3 days. While events such as this must recur through the melt season as the conduit system extends up-glacier and the locus of meltwater inputs shifts, their manifestations in the outlet stream will likely be more subdued later in the season.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3