Snow Stability Index

Author:

Conway H.,Abrahamson J.

Abstract

AbstractField tests have been developed to measure the shear and tensile strengths of large volumes of snow. Basal shear strengths were measured across and down some slabs of snow, giving highly variable strengths. These measurements support the idea that the basal region of an avalanche may contain zones where the basal shear strength exceeded the gravitational shear stress (i.e. pinning areas) with weak zones between (deficit areas) where the shear strength was less than the gravitational shear stress. The slab tensile stresses induced by these deficit areas would become high if either the deficit length (down-slope) was large, or the deficit itself was large. Measurements of tensile strengths of slabs above weak layers, together with the down-slope gravitational stress of a snow slab, suggest that deficit lengths of only several metres are often sufficient to cause a local tensile failure. In some cases, this local failure may propagate across the remainder of the slope (depending on the pinning distribution) and cause an avalanche. We propose that themaximumlocal deficit, rather than the mean slope deficit of basal shear stress, and themaximumlength of the local deficit, are the first important parameters to consider when evaluating slope stability in the field, since the magnitude of these factors determine the probability of a local tensile failure.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3