Abstract
Abstract“Sliding velocity” and “friction law” are precisely defined. Different scales for tackling glacier dynamics are introduced. The energy balance in the melting-refreezing process is clarified. The validity of a Glen body as a model for ice rheology is discussed. The assumed model for subglacial water is a very slightly pervious ice, and a not absolutely watertight ice-bedrock interface, owing to glacial striae and rock joints. Then autonomous hydraulic regimes and cavities at water vapour pressure have a negligible influence on the drag, and only the interconnected regime has to be considered.A more rigorous treatment of Weertman’s model (independent knobs) gives quite different numerical factors. In general a term increasing with Terzaghi’s effective pressure N has to be added to the drag. The double-valued friction law found by Weertman is shown to have been an error.Kamb’s relations for the model with a vanishing microrelief are considerably simplified. His conjectural solution cannot be extended to slopes actually found in the microrelief.The author’s (Lliboutry, 1968) treatment is unsatisfactory and includes an error. With a model consisting of irregular bumps of similar length, a new friction law is given. The pertinent measure of the bedrock roughness is then the shadowing function, not the spectral power density.
Publisher
International Glaciological Society
Cited by
153 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献