The thermal regime of sub-polar glaciers mapped by multi-frequency radio-echo sounding

Author:

Björnsson Helgi,Gjessing Yngvar,Hamran Svein-Erik,Hagen Jon Ove,LiestøL Olav,Pálsson Finnur,Erlingsson Björn

Abstract

AbstractRadio-echo soundings provide an effective tool for mapping the thermal regimes of polythermal glaciers on a regional scale. Radar signals of 320–370 MHz penetrate ice at sub-freezing temperatures but are reflected from the top of layers of ice which are at the melting point and contain water. Radar signals of 5–20 MHz, on the other hand, see through both the cold and the temperate ice down to the glacier bed. Radio-echo soundings at these frequencies have been used to investigate the thermal regimes of four polythermal glaciers in Svalbard: Kongsvegen, Uvérsbreen, Midre Lovénbreen and Austre Brøggerbreen. In the ablation area of Kongsvegen, a cold surface layer (50–160 m thick) was underlain by a warm basal layer which is advected from the temperate accumulation area. The surface ablation of this cold layer may be compensated by freezing at its lower cold-temperate interface. This requires that the free water content in the ice at the freezing interface is about 1 % of the volume. The cold surface layer is thicker beneath medial moraines and where cold-based hanging glaciers enter the main ice stream. On Uvérsbreen the thermal regime was similar to that of Kongsvegen. A temperate hole was found in the otherwise cold surface layer of the ablation area in a surface depression between Kongsvegen and Uvérsbreen where meltwater accumulates during the summer (near the subglacial lake Setevatnet, 250 m a.s.l.). Lovénbreen w as frozen to the bed at the snout and along all the mountain slopes but beneath the central part of the glacier a warm basal layer (up to 50 m thick) was fed by temperate ice from two cirques. On Austre Brøggerbreen, a temperate basal layer was not detected by radio-echo soundings but the basal ice was observed to be at the melting point in two boreholes.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 194 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3