Author:
Edens Michael Q.,Brown Robert L.
Abstract
AbstractA set of microstructural variables is selected to characterize the behavior of snow. Corresponding mathematical relations from quantitative stereology theory are presented along with relations and techniques required for numerical evaluation. An experimental investigation is carried out to determine changes in these variables for snow subjected to large compressive deformations. The micro-structural variables studied included coordination number, grain-size, bond radius, neck length, pore-size, free surface area and grains/unit volume. Measurements at several stages of deformation are used to evaluate the changes in the microstructure as functions of deformation. Microstructure measurements of six snow samples subjected to confined compression tests are presented for pre-compressed and compressed states, corresponding to final stresses of 0.387, 0.77 and 1.55 MPa. Grain-size and bond radius were found to go through finite changes during compression, although the variation of bond radius was more complicated in nature. The coordination number and number of bonds/unit volume were found to go through large changes during compression, while specific free surface area was found to increase by 100% due to grain- and bond-fracture processes. No discernible patterns of change in neck length could be found in the experiments. A close relationship between some of the microstructural variables and the stress response of the material was observed. These results serve to contribute to the presently available data and understanding of the microstructural behavior of snow.
Publisher
International Glaciological Society
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献