Automated detection and temporal monitoring of crevasses using remote sensing and their implications for glacier dynamics

Author:

Bhardwaj Anshuman,Sam Lydia,Singh Shaktiman,Kumar Rajesh

Abstract

AbstractDetailed studies on temporal changes of crevasses and their linkage with glacier dynamics are scarce in the Himalayan context. Observations of temporally changing surficial crevasse patterns and their orientations are suggestive of the processes that determine seasonal glacier flow characteristics. In the present study, on a Himalayan valley glacier, changing crevasse patterns and orientations were detected and mapped on Landsat 8 images in an automated procedure using the ratio of Thermal Infrared Sensor (TIRS) band 10 to Optical Land Imager (OLI) shortwave infrared (SWIR) band 6. The ratio was capable of mapping even crevasses falling under mountain shadows. Differential GPS observations suggested an average error of 3.65% and root-mean-square error of 6.32m in crevasse lengths. A year-round observation of these crevasses, coupled with field-based surface velocity measurements, provided some interesting interpretations of seasonal glacier dynamics.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3