Novel shearing apparatuses in confined flow for investigating recrystallization and fabric evolution processes in mono- and polycrystalline ice

Author:

Samyn D.,Azuma N.,Matsuda I.,Osabe Y.

Abstract

AbstractThe orientations of individual crystals within a polycrystalline aggregate subjected to stress have a strong influence on its bulk strain rate and flow behavior. The ability to include the effect of crystal fabric and recrystallization processes in an ice flow law, especially at the bottom of glaciers and ice sheets where temperature is close to the pressure-melting point, is important because the stratigraphy of the ice body may be affected and the paleoclimate reconstruction hampered. We present herein three newly developed deformation apparatuses offering the possibility, from single experiments, of investigating different finite strain stages and their corresponding c-axis fabric and grain texture patterns in various confined, shear flow configurations (simple shear, pure shear and compression/extension bending). The technical set-ups and major advantages compared to classical methods are explained, and results from experiments are discussed in order to illustrate the functioning and purposes of the methods. In all experiments, significant variations in the microstructural development have been observed that reflect the varying orientations of the anisotropy and its relationship to the stress pattern. In monocrystalline ice-bending experiments, the pre-existing c-axis fabric is shown to have a profound influence on the response to stress and possibly to the type of slip system activated.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Making EBSD on water ice routine;Journal of Microscopy;2015-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3