A framework for estimating anchor ice extent at potential formation sites in McMurdo Sound, Antarctica

Author:

Mager Sarah M.,Leonard Gregory H.,Pauling Andrew G.,Smith Inga J.

Abstract

AbstractA distinctive feature of polar regions is the formation of ice clusters attached to the seabed, known as ‘anchor ice’. Anchor ice plays an important role in mobilizing bed sediments, and serves ecological roles providing habitats, or as an agent of disturbance creating potentially fatal environments to benthic fauna. The sublittoral zone associated with the landward margin represents the most likely environment for anchor ice formation, where conditions conducive to the advection of supercooled water from sub-ice-shelf cavities are favourable. We develop a framework to estimate the areal extent of anchor ice formation assuming a northerly flow of 75m deep supercooled water plumes from the Ross and McMurdo Ice Shelf cavities, Antarctica. In McMurdo Sound our results indicate that regions beneath the McMurdo Ice Shelf, extending along Brown Peninsula and White and Black Islands, are likely conducive to anchor ice formation. Anchor ice may also form along the Hut Point Peninsula and around Ross Island, and in pockets along the southern Victoria Land coast. The limitations of our approach include an imposed northerly flow of Ice Shelf Water, poorly constrained sub-ice-shelf bathymetry, and temporal variability in supercooled water depth production, particularly in the eastern Sound.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3