Author:
Miège Clément,Forster Richard R.,Box Jason E.,Burgess Evan W.,McConnell Joseph R.,Pasteris Daniel R.,Spikes Vandy B.
Abstract
AbstractDespite containing only 14% of the Greenland ice sheet by area, the southeastern sector has the highest accumulation rates, and hence receives ∼30% of the total snow accumulation. We present accumulation rates obtained during our 2010 Arctic Circle Traverse derived from three 50 m firn cores dated using geochemical analysis. We tracked continuous internal reflection horizons between the firn cores using a 400 MHz ground-penetrating radar (GPR). GPR data combined with depth-age scales from the firn cores provide accumulation rates along a 70 km transect. We followed an elevation gradient from ∼2350 to ∼1830m to understand how progressive surface melt may affect the ability to chemically date the firn cores and trace the internal layers with GPR. From the firn cores, we find a 52% (∼0.43 m w.e. a-1) increase in average snow accumulation and greater interannual variability at the lower site than the upper site. The GPR profiling reveals that accumulation rates are influenced by topographic undulations on the surface, with up to 23% variability over 7 km. These measurements confirm the presence of high accumulation rates in the southeast as predicted by the calibrated regional climate model Polar MM5.
Publisher
International Glaciological Society
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献