Author:
Alemany O.,Chappellaz J.,Triest J.,Calzas M.,Cattani O.,Chemin J.F.,Desbois Q.,Desbois T.,Duphil R.,Falourd S.,Grilli R.,Guillerme C.,Kerstel E.,Laurent B.,Lefebvre E.,Marrocco N.,Pascual O.,Piard L.,Possenti P.,Romanini D.,Thiebaut V.,Yamani R.
Abstract
AbstractIn response to the ‘oldest ice’ challenge initiated by the International Partnerships in Ice Core Sciences (IPICS), new rapid-access drilling technologies through glacier ice need to be developed. These will provide the information needed to qualify potential sites on the Antarctic ice sheet where the deepest section could include ice that is >1Ma old and still in good stratigraphic order. Identifying a suitable site will be a prerequisite for deploying a multi-year deep ice-core drilling operation to elucidate the cause and mechanisms of the mid-Pleistocene transition from 40 ka glacial–interglacial cycles to 100 ka cycles. As part of the ICE&LASERS/SUBGLACIOR projects, we have designed an innovative probe, SUBGLACIOR, with the aim of perforating the ice sheet down to the bedrock in a single season and continuously measuring in situ the isotopic composition of the melted water and the methane concentration in trapped gases. Here we present the general concept of the probe, as well as the various technological solutions that we have favored so far to reach this goal.
Publisher
International Glaciological Society
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献