Special aspects of ice drilling and results of 5G hole drilling at Vostok station, Antarctica

Author:

Litvinenko V.S.,Vasiliev N.I.,Lipenkov V.Ya.,Dmitriev A.N.,Podoliak A.V.

Abstract

AbstractThis paper documents the drilling of the 5G deep hole at the Russian Vostok station, Antarctica. The hole construction is described and the specifications of the drill and surface drilling equipment are given. The peculiarities of drilling at various depths are considered. Based on the extensive experimental data collected at Vostok station, the processes occurring at the hole bottom are investigated: ice breaking and cutting, bottom cleaning and chip transport, and accumulation of the chips in the screen. The main factors affecting ice-drilling efficiency are the coarseness of ice crystals and the ice temperature. When ice crystal size exceeds 10 mm the cutting efficiency sharply decreases, and when ice temperature exceeds –5°C the chip transport from the hole bottom and the chip density in the screen are reduced. The drill advance then becomes irregular, slows down and may even be terminated in some cases. Optimal values of the basic drilling parameters (e.g. cutter head rotation rate and drilling fluid flow rate in the circulation system) have been deduced empirically. The designs of the cutter head and circulation system including screens have been significantly modified, allowing the drilling process to proceed at a normal rate even in the vicinity of the subglacial lake surface.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3