WISSARD at Subglacial Lake Whillans, West Antarctica: scientific operations and initial observations

Author:

Tulaczyk Slawek,Mikucki Jill A.,Siegfried Matthew R.,Priscu John C.,Barcheck C. Grace,Beem Lucas H.,Behar Alberto,Burnett Justin,Christner Brent C.,Fisher Andrew T.,Fricker Helen A.,Mankoff Kenneth D.,Powell Ross D.,Rack Frank,Sampson Daniel,Scherer Reed P.,Schwartz Susan Y.,

Abstract

AbstractA clean hot-water drill was used to gain access to Subglacial Lake Whillans (SLW) in late January 2013 as part of the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project. Over 3 days, we deployed an array of scientific tools through the SLW borehole: a downhole camera, a conductivity–temperature–depth (CTD) probe, a Niskin water sampler, an in situ filtration unit, three different sediment corers, a geothermal probe and a geophysical sensor string. Our observations confirm the existence of a subglacial water reservoir whose presence was previously inferred from satellite altimetry and surface geophysics. Subglacial water is about two orders of magnitude less saline than sea water (0.37–0.41 psu vs 35 psu) and two orders of magnitude more saline than pure drill meltwater (<0.002 psu). It reaches a minimum temperature of –0.55~C, consistent with depression of the freezing point by 7.019 MPa of water pressure. Subglacial water was turbid and remained turbid following filtration through 0.45 µm filters. The recovered sediment cores, which sampled down to 0.8 m below the lake bottom, contained a macroscopically structureless diamicton with shear strength between 2 and 6 kPa. Our main operational recommendation for future subglacial access through water-filled boreholes is to supply enough heat to the top of the borehole to keep it from freezing.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3