The effect of increased fresh water from Antarctic ice shelves on future trends in Antarctic sea ice

Author:

Bintanja R.,van Oldenborgh G.J.,Katsman C.A.

Abstract

AbstractObservations show that, in contrast to the Arctic, the area of Antarctic sea ice has increased since 1979. A potential driver of this significant increase relates to the mass loss of the Antarctic ice sheet. Subsurface ocean warming causes basal ice-shelf melt, freshening the surface waters around Antarctica, which leads to increases in sea-ice cover. With climate warming ongoing, future mass-loss rates are projected to accelerate, which has the potential to affect future Antarctic sea-ice trends. Here we investigate to what extent future sea-ice trends are influenced by projected increases in Antarctic freshwater flux due to subsurface melt, using a state-of-the-art global climate model (EC-Earth) in standardized Climate Model Intercomparison Project phase 5 (CMIP5) climate-change simulations. Virtually all CMIP5 models disregard ocean–ice-sheet interactions and project strongly retreating Antarctic sea ice. Applying various freshwater flux scenarios, we find that the additional fresh water significantly offsets the decline in sea-ice area and is even able to reverse the trend in the strongest freshwater forcing scenario that can reasonably be expected, especially in austral winter. The model also simulates decreasing sea surface temperatures (SSTs), with the SST trends exhibiting strong regional variations that largely correspond to regional sea-ice trends.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3