Spatial and temporal characterization of sea-ice deformation

Author:

Hutchings Jennifer K.,Roberts Andrew,Geiger Cathleen A.,Richter-Menge Jacqueline

Abstract

AbstractIn late March 2007 an array of GPS ice drifters was deployed in the Beaufort Sea as part of the Sea Ice Experiment: Dynamic Nature of the Arctic (SEDNA). the drifters were deployed in an array designed to resolve four, nested spatial scales of sea-ice deformation, from 10 to 140 km, with the arrays maintaining appropriate shape for strain-rate calculation until mid-June. In this paper, we test whether sea-ice deformation displays fractal properties in the vicinity of SEDNA. We identify that deformation time series have different spectral properties depending on the spatial scale. At the scales around 100 km, deformation is a red-noise process, indicating the importance of the ice-pack surface forcing in determining the deformation rate of sea ice at this scale. At smaller scales, the deformation becomes an increasingly whiter process (it has pink noise properties), which suggests an increasing role of dissipative processes at smaller scales. At spatial scales of 10–100 km, and sub-daily scales, there is no deformation coherence across scales; coherence only becomes apparent at longer scales greater than 100 km. the lack of coherence at small scales aids in understanding previous observations where correlation between 10km regions adjacent to each other varied widely, with correlation coefficients between –0.3 and 1. This suggests it is not appropriate to think of sea ice as having a decorrelation length scale for deformation. We find that lead scale observations of deformation are required when estimating ice growth in leads and ridging time series. For the two SEDNA arrays, we find coherence between 140 and 20 km scale deformation up to periods of 16 days. This suggests sea-ice deformation displays coherent deformation between 100 km scale and the scale of the Beaufort Sea (of order 1000 km), over synoptic time periods (daily to weekly timescales). Organization of leads at synoptic and larger scales is an emergent feature of the deformation field that is caused by the smooth variation of surface forcing (wind) on the ice pack.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3