Field observation and modelling of weak-layer evolution

Author:

Fierz Charles

Abstract

For operational snow-cover simulations, an adequate modelling of the evolution of buried weak layers is of crucial importance. Therefore, the processes governing snow metamorphism within weak layers before and after burial must be known in detail. At the study site of the Swiss Federal Institute for Snow and Avalanche Research, 2540 ma.s.l., a 2 cm thick weak layer of column-grown cup-shaped crystals formed beneath a thin crust in mid-January 1996. Exposed to near-surface processes for about 4 weeks, the layer was buried on 8 February and persisted in the snowpack until mid-April. Numerous temperature profiles and characterizations of both the weak and the adjacent layers were performed in situ. Snow-grain samples, as well as larger snow blocks, were taken to the cold laboratory for further analysis of the texture. The shear strength of the buried weak layer was also investigated by means of shear-frame tests. The field observations and measurements are compared with model simulations of snow temperature and stratigraphy. The comparison shows potential and problems in the modelling of weak-layer evolution.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3