Enhanced thermodynamic ice growth by sea-ice deformation

Author:

Heil Petra,Lytle Victoria I.,Allison Ian

Abstract

Sca-icc drift and deformation were measured with an array of drifting buoys during a 1995 winter experiment off the East Antarctic continental shelf south of the Antarctic Divergence. The buoys were configured so that deformation of the icefield could be monitored on a range of spatial scales from 2 to 130 km. The mean hourly drift rate during the 3 week-long experiment was 0.21 m s−1, and the mean daily translation of the field was 17.3 km. Differential kinematic parameters calculated from the data show a very high short-term variance, indicating that high-frequency processes are dominant. Spectral analysis of the velocity data shows a major peak of the energy spectrum at the frequency of passage of synoptic weather systems, and a second peak at the inertial frequency. A major storm event occurred during the experiment. Net divergence over this phase of the experiment, as measured by a five-buoy array, is small compared to the short-period variance. This alternating divergence and convergence has a marked effect on the net ice growth. Intense freezing and rapid new ice formation occurs in the open water areas formed during divergence, and this is thickened by rafting and ridge-building during the subsequent convergence. New open water areas equivalent to 10% of the total area formed during the first phase of the experiment. A one-dimensional multilayer thermodynamic model of ice growth shows that this led to an increase of 2.8 cm in the area-averaged ice growth over a 7 day interval, which is equivalent to 40-50% of the total estimated ice growth over the region.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3