Density, velocity and friction measurements in a dry-snow avalanche

Author:

Dent J.D.,Burrell K.J.,Schmidt D. S.,Louge M.Y.,Adams E.E.,Jazbutis T.G.

Abstract

A small avalanche path near the Bridger Bowl ski area in southwestern Montana has been instrumented to measure density, velocity and dynamic friction in a flowing avalanche. These measurements, made by an array of sensors mounted in the avalanche path, have been carried out for several dry-snow avalanches. Measurements of density were made using a capacitance probe that measures the dielectric constant of any material that passes in front of it. Through a calibration procedure, the dielectric constant of a given type of snow can be related to the density of that snow. Optical sensors were used to measure light reflected from the avalanche as it passed by the sensors. Signals from adjacent optical sensors were cross-correlated to determine velocity. Density and velocity measurements were made at several heights in the avalanche, with particular attention directed near the running surface. Results indicate that avalanche deformation is concentrated near the running surface where the snow density is found to be largest. Upward from the surface, the velocity gradient falls off greatly while the density also declines.Finally, the dynamic-friction coefficient at the base of the avalanche was found by measuring shear and normal forces on a roughened 23 cm × 28 cm aluminum plate mounted parallel and flush with the avalanche running surface. The ratio of the shear force to normal force on the plate provides a measure of the dynamic-friction coefficient at the base of the avalanche.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3