Internal radio-echo layering at Vostok station, Antarctica, as an independent stratigraphie control on the ice-core record

Author:

Siegert Martin J.,Hodgkinst Richard,Dowdeswell Julian A.

Abstract

Antarctic radio-echo sounding (RES) data at 60 MHz have been used to determine an independent stratigraphy for the ice core at Vostok station, based on internal radio-echo layering. A-scope RES data allow the amplitude of reflected electromagnetic (e/m) waves to be measured and, by accounting fur geometric spreading and absorption losses of the e/m wave, power reflection coefficients (PRCs) to be calculated. This information is compared with time-continuous Z-scope RES data in order to trace continuous e/m reflectors across the ice sheet. Internal ice-sheet horizons deeper than 800 m are caused by layers of ice that possess distinctly different dielectric properties (i.e. acidic layers) compared with ice above and/or below. Comparison of four PRC samples, located ~ 5 km from Vostok station, revealed five distinct internal reflections between 1000 and 2200 m. Z-scope data from directly over the Vostok station site show the same five prominent internal radio-echo layers. The depth-related radio-echo signals were then compared with chemical records from the Vostok ice core, including the H2SO4 signal, a major component of which is derived from volcanic events. From this procedure, internal radio-echo reflectors and Vostok ice-core acid measurements were correlated. Avery good match was made between Z-scope and ice-core data. However, vertical offsets observed between A-scope-derived RES layers and peaks in the chemical signal of up to 100 m are probably due to the general Inkling of the ice-sheet layering between the core site and the RES flight-line. We conclude that 60 MHz RES layering may be regarded as a stratigraphy independent of palaeoclimate, and may be used to correlate other deep Southern Hemisphere ice cores.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3