Author:
Van Den Broeke Michiel,Reijmer Carleen,Van As Dirk,Van de Wal Roderik,Oerlemans J.
Abstract
AbstractWe present the seasonal cycle of the Antarctic surface energy balance (SEB) using 4 years (1998–2001) of automatic weather station (AWS) data. The four AWSs are situated on an ice shelf, in the coastal and inland katabatic wind zone and the interior plateau of Dronning Maud Land. To calculate surface temperature we use a SEB closure assumption for a surface skin layer. Modelled and observed surface have a root-mean-square difference of 1.8 K at the plateau AWS (corresponding to an uncertainty in the SEB of 5Wm–2) and <1 K (3Wm–2) at the other sites. The effect of wind-speed sensor freezing on the calculated SEB is discussed. At all sites the annual mean net radiation is negative and the near-surface air is on average stably stratified. Differences in the seasonal cycle of the SEB are mainly caused by the different wind climates at the AWS sites. In the katabatic wind zone, a combination of clear skies and strong winds forces a large wintertime turbulent transport of sensible heat towards the surface, which in turn enhances the longwave radiative heat loss. On the coastal ice shelf and on the plateau, strong winds are associated with overcast conditions, limiting the radiative heat loss and sensible heat exchange. During the short Antarctic summer, the net radiation becomes slightly positive at all sites. Away from the cold interior, the main compensating heat loss at the surface is sublimation. In the interior, summer temperatures are too low to allow significant sublimation to occur; here, surface heat loss is mainly due to convection.
Publisher
International Glaciological Society
Cited by
86 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献