Modelling coupled hydraulics and sediment transport of a high-magnitude flood and associated landscape change

Author:

Carrivick Jonathan L.

Abstract

AbstractProcesses and mechanisms of erosion, transport and deposition within high-magnitude outburst floods such as jökulhlaups and lahars are poorly understood and remain largely unquantified. This study therefore applies a two-dimensional or depth-averaged hydrodynamic model, with fully integrated sediment transport, to reconstruct a Holocene jökulhlaup to have occurred from Kverkfjöll volcano, Iceland. Results indicate simultaneous inundation of multiple channels, flow around islands, hydraulic jumps and multi-directional flow including backwater areas and hydraulic ponding. These flow characteristics are typical of outburst floods that are volcanically triggered, flow through steep volcanic terrain and contain high concentrations of volcaniclastic sediment. Kverkfjöll jökulhlaups had low frontal flow velocities but as stage increased, velocities reached 5–15ms–1. Peak stage was prolonged in zones of hydraulic ponding, but generally attenuated in magnitude and duration downstream. Suspended load transport persisted over the entire hydrograph but bed load transport was spatially discontinuous and comprised distinct pulses. A hierarchy of landforms is proposed, ranging from highest energy zones (erosional gorges, scoured bedrock, cataracts and spillways) to lowest (valley-fills, bars and slackwater deposits). Bedrock erosion was generally where flow exceeded ∽3m flow depth, ∽7ms–1 flow velocity, ∽1×102Nm–2 shear stress and 3 ×102Wm–2 stream power. Deposition occurred below ∽8m flow depth, 11 ms–1 flow velocity, 5 ×102Nm–2 shear stress and 3 ×103Wm–2 stream power. Hydraulic ranges associated with erosion and deposition have considerable overlap due to transitional flow phenomena, transitions in sediment concentration and the influence of upstream effects, such as hydraulic ponding behind topographic constrictions. These results are the first of coupled hydraulic and sediment transport phenomena in high-magnitude outburst floods with fluid rheology and high sediment content, such as jökulhlaups and dilute lahars. Modelled changes in sediment mass closely resembled field-mapped zones of erosion and deposition. This paper therefore introduces a capability to simulate rapid landscape change due to high-magnitude outburst flood.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3