Changes in the shear strength and micro-penetration hardness of a buried surface-hoar layer

Author:

Birkeland Karl W.,Kronholm Kalle,Schneebeli Martin,Pielmeier Christine

Abstract

AbstractWe investigated a buried surface-hoar layer using the SnowMicroPen (SMP), an instrument designed to measure detailed snowpack profiles.We collected data from two adjacent parts of a slope 6 days apart. In addition, one manual snowpack profile was sampled each day, as well as 50 quantified loaded column tests (QLCTs) which provided an index of shear strength. For the SMP data, a 900 m2 area was sampled on both days in a grid with points 3 mapart, with some sub-areas of more closely spaced measurements. We collected 86 SMP profiles on the first day and 129 on the second day. Our analyses involved manually locating layer boundaries and calculating statistics for the force signal through the surface-hoar layer. The shear strength index increased by 40% between the two sampling days, but the SMP data show no statistical difference in layer thickness, and the mean, minimum, median, and a variety of percentile measures of the SMP force signal through the layer also do not change. Interestingly, the maximum hardness, and the variance and coefficient of variation of the SMP signal, increased. Since the small SMP tip might only break one or a couple of bonds as it passes through the weak layer, we interpret these changes as being indicative of increasing bond strength. Though we cannot specifically tie the increasing maximum hardness of the SMP signal to our QLCT results, our work suggests that the maximum SMP signal within buried surface-hoar layers may be useful for tracking increases in the shear strength of those layers.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3