DEM quality assessment for quantification of glacier surface change

Author:

Pope Addy,Murray Tavi,Luckman Adrian

Abstract

AbstractPhotogrammetric digital elevation models (DEMs) are often used to derive and monitor surfaces in inaccessible areas. They have been used to monitor the spatial and temporal change of glacier surfaces in order to assess glacier response to climate change. However, deriving photogrammetric DEMs of steep mountainous topography where the surface is often obscured by regions of deep shadow and snow is particularly difficult. Assessing the quality of the derived surface can also be problematic, as high-accuracy ground-control points may be limited and poorly distributed throughout the modelled area. We present a method of assessing the quality of a derived surface through a detailed sensitivity analysis of the DEM collection parameters through a multiple input failure warning model (MIFWM). The variance of a DEM cell elevation is taken as an indicator of surface reliability allowing potentially unreliable areas to be excluded from further analysis. This analysis allows the user to place greater confidence in the remaining DEM. An example of this method is presented for a small mountain glacier in Svalbard, and the MIFWM is shown to label as unreliable more DEM cells over the entire DEM area, but fewer over the glacier surface, than other methods of data quality assessment. The MIFWM is shown to be an effective and easily used method for assessing DEM surface quality.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3