A dislocation-based analysis of the creep of granular ice: preliminary experiments and modeling

Author:

Cole David M.

Abstract

AbstractThe nature of the fall-off at lower stresses from power-law behavior to a lower-order stress dependency is of particular interest in glacier and ice-sheet modeling. Preliminary experiments show that the stress level at which the fall-off occurs is a function of the specimen’s dislocation density. The analysis employs a dislocation-based model of anelasticity that provides a quantitative relationship between the effective dislocation density and the area of hysteresis loops observed in cyclic loading experiments. Combining this technique with a staged creep experiment makes it possible to calculate the dislocation density as a function of strain, thereby supporting a quantitative dislocation analysis of the deformation process.Work on saline ice established that the threshold stress associated with power-law behavior increased as a result of prior straining, power-law behavior emerged when the effective dislocation density increased measurably during deformation, and approximately linear behavior was evident when the dislocation density remained relatively constant. Those findings motivated the experiments on fresh-water ice presented here. The preliminary experiments show that pre-straining increases the stress associated with the fall-off from power-law behavior, and the results are interpreted in the context of a dislocation-based constitutive model developed for sea ice.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3