Greenland ice-sheet volume sensitivity to basal, surface and initial conditions derived from an adjoint model

Author:

Heimbach Patrick,Bugnion Véronique

Abstract

AbstractWe extend the application of control methods to a comprehensive three-dimensional thermomechanical ice-sheet model, SICOPOLIS (SImulation COde for POLythermal Ice Sheets). Lagrange multipliers, i.e. sensitivities, are computed with an exact, efficient adjoint model that has been generated from SICOPOLIS by rigorous application of automatic differentiation. The case study uses the adjoint model to determine the sensitivity of the total Greenland ice volume to various control variables over a 100 year period. The control space has of the order 1.2 × 106 elements, consisting of spatial fields of basal flow parameters, surface and basal forcings and initial conditions. Reliability of the adjoint model was tested through finite-difference perturbation calculations for various control variables and perturbation regions, ascertaining quantitative inferences of the adjoint model. As well as confirming qualitative aspects of ice-sheet sensitivities (e.g. expected regional variations), we detect regions where model sensitivities are seemingly unexpected or counter-intuitive, albeit ‘real’ in the sense of actual model behavior. An example is inferred regions where sensitivities of ice-sheet volume to basal sliding coefficient are positive, i.e. where a local increase in basal sliding parameter increases the ice-sheet volume. Similarly, positive (generally negative) ice temperature sensitivities in certain parts of the ice sheet are found, the detection of which seems highly unlikely if only conventional perturbation experiments had been used. The object of this paper is largely a proof of concept. Available adjoint-code generation tools now open up a variety of novel model applications, notably with regard to sensitivity and uncertainty analyses and ice-sheet state estimation or data assimilation.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3