Three-dimensional modelling of the dynamics of Johnsons Glacier, Livingston Island, Antarctica

Author:

Martín Carlos,Navarro Francisco,Otero Jaime,Cuadrado María L.,Corcuera María I.

Abstract

AbstractA new three-dimensional finite-element model of the steady-state dynamics of temperate glaciers has been developed and applied to Johnsons Glacier, Livingston Island, Antarctica, with the aim of determining the velocity and stress fields for the present glacier configuration. It solves the full Stokes system of differential equations without recourse to simplifications such as those involved in the shallow-ice approximation. Rather high values of the stiffness parameter B (∼0.19–0.23MPaa1/3) are needed to match the observed ice surface velocities, although these results do not differ much from those found by other authors for temperate glaciers. Best-fit values of the coefficient k in the sliding law (*2.2–2.7 x 103m a–1MPa–2) are also of the same order of magnitude as those found by other authors. The results for velocities are satisfactory, though locally there exist significant discrepancies between computed and observed ice surface velocities, particularly for the vertical ones. This could be due to failures in the sliding law (in particular, the lack of information on water pressure), the use of an artificial down-edge boundary condition and the fact that bed deformation is not considered. For the whole glacier system, the driving stress is largely balanced by the basal drag (80% of the driving stress). Longitudinal stress gradients are only important in the divide areas and near the glacier terminus, while lateral drag is only important at both sides of the terminal zone.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3