Author:
Kern Stefan,Heygster Georg
Abstract
AbstractUsing data from the 85 GHz channels of the Special Sensor Microwave/ Imager (SSM/I) allows a resolution improvement by at least a factor of four compared to the other channels. Consequently higher-resolution sea-ice concentration data can be obtained which in turn can be used to improve the results of numerical weather-prediction (NWP) and global circulation models. The proposed new sea-ice concentration retrieval algorithm (SEA LION algorithm) uses the polarization at 85 GHz (p). Emission from atmospheric water and scattering at the wind-roughened sea surface (weather effect) decrease p and cause an overestimate of the sea-ice concentration. We quantify the weather effect with a radiative transfer model and atmospheric data obtained from NWP models and the other SSM/I channels, and correct p for this effect. Tie points of open water and sea ice are determined for each month separately from daily gridded 85 GHz SSM/I brightness temperatures. Sea-ice concentrations are calculated with the new algorithm for the entire Southern Ocean for each day of the period 1992−98 with a spatial resolution of 12.5 × 12.5 km2. Comparisons of these ice concentrations with Operational Linescan System visible images reveal convincing results concerning the monitoring of coastal polynyas and the break-up of the pack ice in spring. SEA LION sea-ice extents and areas, and comparisons between SEA LION sea-ice concentrations and ship observations, agree with those obtained by the NASA Team and the Bootstrap algorithms:
Publisher
International Glaciological Society
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献