Author:
Mishra Aloke,Mahajan Puneet
Abstract
AbstractA constitutive law for snow derived from a complementary power potential is proposed. The total deformation of snow is divided into elastic and creep parts. A hereditary integral using Norton’s power law is employed to describe primary creep. The concept of effective stress, which takes compressibility of snow into account, is used to calculate creep deformation. The hereditary integral is approximated by a non-linear spring–dashpot model. Results from uniaxial compression experiments (stress range 15– 45 kPa) on sieved snow of density range 180–470 kgm-3 were used to determine the constants appearing in the constitutive equation. The response of snow to constant strain rate (7.4×10-6 s-1 to 2.2×10-5 s-1) under bilaterally confined conditions was found with an iterative scheme employing the proposed constitutive law. The simulated results agree well with the measured axial stresses and volumetric changes.
Publisher
International Glaciological Society
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献