Author:
Yan Yuping,Mayewski Paul A.,Kang Shichang,Meyerson Eric
Abstract
AbstractUsing US National Centers for Environmental Prediction/US National Center for Atmospheric Research re-analysis data, we investigate the relationships between crustal ion (nssCa2+) concentrations from three West Antarctic ice cores, namely, Siple Dome (SD), ITASE00-1 (IT001) and ITASE01-5 (IT015), and primary components of the climate system, namely, air pressure/geopotential height, zonal (u) and meridional (v) wind strength. Linear correlation analyses between nssCa2+ concentrations and both air-pressure and wind fields for the period of overlap between records indicate that the SD nssCa2+ variation is positively correlated with spring circumpolar zonal wind, while IT001 nssCa2+ has a positive correlation with circumpolar zonal wind throughout the year (r > 0.3, p < 0.01). Intensified Southern Westerlies circulation is conducive to transport of more crustal aerosols to both sites. Further correlation analyses between nssCa2+ concentrations from SD and IT001 and atmospheric circulation suggest that the high inland plateau (represented by core IT001) is largely influenced by transport from the upper troposphere. IT015 nssCa2+ is negatively correlated with westerly wind in October and November, suggesting that stronger westerly circulation may weaken the transport of crustal species to IT015. Correlations of nssCa2+ from the three ice cores with the Antarctic Oscillation index are consistent with results developed from the wind-field investigation. In addition, calibration between nssCa2+ concentration and the multivariate El Niño–Southern Oscillation (ENSO) index shows that crustal species transport to IT001 is enhanced during strong ENSO events.
Publisher
International Glaciological Society
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献