Analyses of a surging outlet glacier of Vatnajökull ice cap, Iceland

Author:

Aðalgeirsdóttir Guðfinna,Björnsson Helgi,Pálsson Finnur,Magnússon Eyjolfur

Abstract

AbstractMany of the large outlet glaciers of Vatnajökull ice cap, Iceland, have a history of regular surges. The mass transport during surges can be up to 25% of the total ice flux. This is a considerable amount that affects the whole ice cap, the location of the ice divides, the flow field and the size and shape of the ice cap. Data from the surging outlet Dyngjujökull, on the northern side of Vatnajökull, which surged during the period 1998-2000, are presented: surface elevation changes, displacement and total mass tr ansport. The total gain in ice volume in the receiving area, due to the surge, is considerably smaller than the loss in the reservoir area. The difference is mainly due to enhanced melting rates on the larger surface area of the crevassed glacier surface, and increased turbulent fluxes above the surface, but also due to increased frictional melting at the bed during the surge. A two-dimensional vertically integrated numerical flow model, of standard shallow-ice approximation type, is used to show that a modeled glacier that is similar in size to Dyngjujökull and subject to the same mass balance has three times higher velocities than the measured velocity during the quiescent phase. Adding surges in the numerical model, by periodically increasing the sliding velocity, causes the glacier to retreat and oscillate around a smaller state when subject to the same mass-balance regime. Lowering the equilibrium line by 50 m lets the modeled surging glacier oscillate around a size similar to that of the present glacier, indicating that surging is an efficient long-term ablation mechanism.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3