Enhanced estimation of glacier mass balance in unsampled areas by means of topographic data

Author:

Carturan Luca,Cazorzi Federico,Dalla Fontana Giancarlo

Abstract

AbstractA new method was developed to estimate the mass balance in unsampled areas from existing datasets. Three years of mass-balance data from two glaciers in the central Italian Alps were used to develop and test a multiple-regression method based exclusively on a 10m resolution digital terrain model. The introduction of a relative elevation attribute, which expresses the degree of wind exposure of the gridcells, notably increased the amount of explainable variance in winter balance with respect to altitude itself. The summer balance is highly correlated with elevation, but, in order to obtain reliable extrapolations, the clear-sky shortwave radiation and the diurnal cloud-cover cycle had to be taken into account. The net annual mass balance on a glacier system comprising the two monitored glaciers was calculated by applying both a single regression of winter and summer balance with altitude and the new regression method. The consistency of results was assessed against measured net balances and snow-cover maps drawn in the ablation season. The results of the new method were in close agreement with observations and proved to be less sensitive to the spatial representation of the sampled areas.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3