Implications of shortwave cloud forcing and feedbacks in the Southern Ocean

Author:

Key Erica L.,Minnett Peter J.

Abstract

AbstractMeasurements of the incident solar radiation taken during the Antarctic Remote Ice Sensing Experiment (ARISE) aboard the R/V Aurora Australis in the Southern Ocean and springtime Antarctic ice pack are analyzed together with all-sky cloud imagery to determine the incident shortwave cloud radiative forcing at the surface. For most solar zenith angles (Z<82˚) in this dataset, the primary shortwave cloud effect is to induce cooling of the surface; as the sun approaches the horizon, however, the shortwave effects become negligible or even positive. The clear-sky atmospheric transmissivity over the length of the cruise is 0.91, a value comparable to those derived from measurements taken at various locations in the Arctic during daylight periods. Although the presence of clouds has a great effect on the surface heat budget and provides a negative shortwave feedback that may stabilize the polar atmosphere, the effect on the photosynthetically active radiation available to ice algae is relatively small in comparison to the effects of even small amounts of snow on sea ice.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3