Author:
Duval Paul,Arnaud Laurent,Brissaud Olivier,Montagnat Maureen,de la Chapelle Sophie
Abstract
AbstractInformation on deformation modes, fabric development and recrystallization processes was obtained by study of deep ice cores from polar ice sheets. It is shown that intracrystalline slip is the main deformation mechanism in polar ice sheets. Grain-boundary sliding does not appear to be a significant deformation mode. Special emphasis was laid on the occurrence of "laboratory" tertiary creep in ice sheets. The creep behavior is directly related to recrystallization processes. Grain-boundary migration associated with grain growth and rotation recrystallization accommodates dislocation slip and counteracts strain hardening. The fabric pattern is similar to that induced only by slip, even if rotation recrystallization slows down fabric development. Fabrics which develop during tertiary creep, and are associated with migration recrystallization, are typical recrystallization fabrics. They are associated with the fast boundary migration regime as observed in temperate glaciers. A decrease of the stress exponent is expected from 3, when migration recrystallization occurs, to a value ≤ 2 when normal grain growth occurs.
Publisher
International Glaciological Society
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献