Abstract
The mechanisms of Antarctic ice deformation are discussed. Diffusional flow (Nabarro-Herring or Coble creep) seems to dominate creep for the first 905 m near Dome C. Formation mechanisms of single-maximum fabrics are examined. Dislocation creep does not explain the preferred c-axis orientation observed in the Antarctic ice sheet. The quantitative effects of crystallographic orientation on strain-rate are given. The activation energy for dislocation creep was found to be 78 kJ mol−1 between -7.2°C and -30°C. Rate-limiting mechanisms are discussed.
Publisher
International Glaciological Society
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献