A continuum approach for modelling induced anisotropy in glaciers and ice sheets

Author:

Svendsen Bob,Hutter Kolumban

Abstract

This paper presents a formulation of a continuum model for so-called (stress or deformation) induced anisotropy in natural ice which, unlike computer-based Taylor-type models, can be incorporated in numerical simulations of large ice masses to account for the effects of this process on the flow of these bodies in a physical fashion. To do this, we treat natural ice as a rigid-elastic, non-linear inelastic material which can develop transverse isotropic behaviour (accounting for the simplest kind of induced anisotropy in natural ice masses), where the degree of such anisotropy at each point is controlled by the distribution of crystal glide-plane orientations there. This distribution is described by a so-called orientation-distribution function, for which an evolution relation can be derived. The central constitutive assumption of this formulation relates this distribution to the “structure” tensor representing the transverse isotropy of the material. On the basis of this relation, the model predicts in particular isotropic (e.g. classical Glen’s flow-law type) behaviour at a given point when the distribution of crystal glide-plane orientations is uniform there.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3