Microcracking and shear fracture in ice

Author:

Rist M.A.,Jones S.J.,Slade T.D.

Abstract

The relationship between microcracking and ice Strength has been examined using triaxial apparatus in which track damage can be inhibited by the imposition of confining pressure. Shear fracture in ice is observed to be a rapid, unstable process with no apparent indication of tensile crack localisation or interaction prior to failure and no accompanying large-scale volumetric changes, at least to within 1 ms of the occurrence of macroscopic failure. Shear fracture strength displays little or no dependence on confinement at moderate pressures (P = 5–20MPa), and there is no evidence of significant crack sliding before macroscopic fracture under these conditions. Where flow with distributed microcracking occurs, yield strength can also remain remarkably unaffected by confining pressure, despite reduced crack damage. Particularly under conditions where microcracks are induced by predominantly elastic strains, they may remain stable and non-interacting even at high volumetric densities.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A systematic literature survey of the yield or failure criteria used for ice material;Ocean Engineering;2022-06

2. Plastic Faulting in Ice;Journal of Geophysical Research: Solid Earth;2020-05

3. Surface Quality Improvement in Machining an Aluminum Honeycomb by Ice Fixation;Chinese Journal of Mechanical Engineering;2020-02-27

4. Ductile “Ice”: Frozen hydrogels with high ductility and compressive yielding strength;Extreme Mechanics Letters;2019-04

5. Friction of sea ice;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2018-08-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3