Improvements to shear-deformational models of glacier dynamics through a longitudinal stress factor

Author:

Adhikari Surendra,Marshall Shawn J.

Abstract

AbstractIn a two-dimensional (plane strain) glacier domain, gravity-driven ice flow is balanced by basal drag and the resistance associated with longitudinal stress gradients. The plane strain Stokes model accommodates both these resistances, whereas several simpler models only account for basal drag. Solving the Stokes equations is numerically challenging and computationally expensive, but simpler models may lead to unrealistic dynamical behaviour. Here, we propose a factor which can be introduced in shear-deformational flow models to yield results comparable to those from the plane strain Stokes model. As this factor adapts simpler models to capture the effects of missing dynamics, i.e. longitudinal stress gradients, we refer to it as the longitudinal stress (L-)factor. We assess the usefulness of this factor for idealized domains with complex basal topography and evolving geometry. We apply the model to Haig Glacier, Canadian Rockies, in order to present an illustration of how simulations of glacier response to climate forcing can be improved through the introduction of the L-factor in a shear-deformational flow model.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3