Dispersive pressure and density variations in snow avalanches

Author:

Buser Othmar,Bartelt Perry

Abstract

AbstractSnow avalanches possess two types of kinetic energy: the kinetic energy associated with the mean velocity in the downhill direction and the kinetic energy associated with individual particle velocities that vary from the mean. The mean kinetic energy is directional; the kinetic energy associated with the velocity fluctuations is non-directional in the sense that it is connected to random particle movements. However, the rigid, basal boundary directs the random fluctuation energy into the avalanche. Thus, the random energy flux is converted to free mechanical energy which lifts and dilates the avalanche flow mass, changing the flow density and increasing the normal (dispersive) pressure and, as a consequence, changing the flow resistance. In this paper we derive macroscopic relations that link the production of the random kinetic energy to the perpendicular acceleration of the avalanche’s center of mass. We show that a single burst of fluctuation energy will produce pressures that oscillate around the hydrostatic pressure. Because we do not include a damping process, the oscillations of the center of mass remain, even if the production of random kinetic energy stops. We formulate relationships that can be used within the framework of depth-averaged mass and momentum equations that are often used to simulate snow avalanches in realistic terrain.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3