Abstract
AbstractModels are proposed for channelized and distributed flow of meltwater at the base of an ice sheet. The volumes of both channel and distributed systems evolve according to a competition between processes that open drainage space (e.g. sliding over bedrock, melting of the ice) and processes that close it (e.g. viscous creep of the ice due to a positive effective pressure). Channels are generally predicted to have lower water pressure and therefore capture water from the surrounding regions of distributed flow. There is a natural length scale associated with the distributed system that determines the width of the bed from which water can be drawn into a channel. It is suggested that this determines the spacing between major channels and that this may be reflected in the spacing of eskers. A more permeable distributed system results in more widely spaced, and therefore larger, channels. Calculations of the flow into the head of a channel reveal that there is a critical discharge necessary for it to form, and provide a criterion for where channels can exist.
Publisher
International Glaciological Society
Cited by
114 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献