The ablation zone in northeast Greenland: ice types, albedos and impurities

Author:

Bøggild Carl Egede,Brandt Richard E.,Brown Kendrick J.,Warren Stephen G.

Abstract

AbstractIce types, albedos and impurity content are characterized for the ablation zone of the Greenland ice sheet in Kronprinz Christians Land (80° N, 24° W). Along this ice margin the width of the ablation zone is only about 8 km. The emergence and melting of old ice in the ablation zone creates a surface layer of dust that was originally deposited with snowfall high on the ice sheet. This debris cover is augmented by locally derived wind-blown sediment. Subsequently, the surface dust particles often aggregate together to form centimetre-scale clumps that melt into the ice, creating cryoconite holes. The debris in the cryoconite holes becomes hidden from sunlight, raising the area-averaged albedo relative to surfaces with uniform debris cover. Spectral and broadband albedos were obtained for snow, ice hummocks, debris-covered ice, cryoconite-studded ice and barren tundra surfaces. Broadband ice albedos varied from 0.2 (for ice with heavy loading of uniform debris) to 0.6 (for ice hummocks with cryoconite holes). The cryoconite material itself has albedo 0.1 when wet. Areal distribution of the major surface types was estimated visually from a transect video as a function of distance from the ice edge (330 m a.s.l.). Ablation rates were measured along a transect from the ice margin to the slush zone 8 km from the margin (550 m a.s.l.), traversing both Pleistocene and Holocene ice. Ablation rates in early August averaged 2 cm d−1. Impurity concentrations were typically 4.3 mg L−1 in the subsurface ice. Surface concentrations were about 16 g m−2 on surfaces with low impurity loading, and heavily loaded surfaces had concentrations as high as 1.4 kg m−2. The mineralogical composition of the cryoconite material is comparable with that of the surrounding soils and with dust on a snowdrift in front of the ice margin, implying that much of the material is derived from local sources. A fine mode (clay) is present in the oldest ice but not in the nearby soil, suggesting that its origin is from wind deposition during Pleistocene glaciation.

Publisher

International Glaciological Society

Subject

Earth-Surface Processes

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3