Author:
MacGregor Joseph A.,Anandakrishnan Sridhar,Catania Ginny A.,Winebrenner Dale P.
Abstract
AbstractAs ice streams flow into the Ross Ice Shelf, West Antarctica, their bed coupling transitions from weak to transient to zero as the ice goes afloat. Here we explore the nature of the bed across these crucial grounding zones using ice-penetrating radar. We collected several ground-based 2 MHz radar transects across the grounding zones of Whillans and Kamb Ice Streams and inferred bed-reflectivity changes from in situ measurements of depth-averaged dielectric attenuation, made possible by the observation of both primary and multiple bed echoes. We find no significant change in the bed reflectivity across either grounding zone. Combined with reflectivity modeling, this observation suggests that a persistent layer of subglacial water (>∼0.2 m) is widespread several kilometers upstream of the grounding zone. Our results are consistent with previous inferences of gradual grounding zones across this sector of the Ross Ice Shelf from airborne radar and satellite altimetry. Separately, the only clear bed-reflectivity change that we observed occurs ∼40 km downstream of the Kamb Ice Stream grounding zone, which we attribute to the onset of marine ice accretion onto the base of the ice shelf. This onset is much nearer to the grounding zone than previously predicted.
Publisher
International Glaciological Society
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献